
CUDA Library for T2OURNAMINT
Yajaira Gonzalez Gonzalez, Jeffrey C. McHarg

MIT Lincoln Laboratory
Lexington, Massachusetts, USA

{yajaira.gonzalez, mcharg@ll.mit.edu}

Abstract — We present the design of an optimized CUDA
Library used in T2OURNAMINT, an Electronic Warfare testing
system designed to support many-on-many, hardware-in-the-loop
test capabilities. The CUDA library was designed to handle the
processing of environmental effects such as secondary target
injection, clutter modeling, and receiver thermal noise.

Keywords—GPU, CUDA, Accelerator, Library, Radar Signal
Processing, Tesla K40, Kepler, T2OURNAMINT.

I. INTRODUCTION
T2OURNAMINT, which stands for Testing Theater

Operations Using Real-time Networks Achieving Multiple
Interconnected Nodal Tactics, is a real-time environment
simulator for many-on-many, hardware-in-the-loop electronic
warfare (EW) testing. T2OURNAMINT has been designed and
developed at MIT Lincoln Laboratory and is envisioned to be
the central link between multiple hardware-in-the-loop
emulators and test chambers at the NAVAIR facility.

A realistic EW testing system needs to be able to manage,
model, and represent a large number of environmental and
system interactions. Those interactions include primary and
secondary interactions. Primary interactions are those occurring
between key systems under test, such as the emulation of radars
tracking the trajectory of potential threats and the response of
those threats to the radar signals. These interactions are expected
to be small in number (tens of hardware systems) and require
high fidelity hardware processing. Secondary interactions are
what we will call environmental interactions that affect and
impact the systems under test. These interactions include, but
are not limited to, the simulation of additional non-threatening
targets, clutter effects, and receiver limitations. In general,
secondary types of interactions are those that are large in number
(hundreds of objects and/or distributed responses in range) and
require fast processing that can be performed at the software
level. This paper focuses on how we manage the secondary types
of interactions within T2OURNAMINT. To achieve high
performance and realize acceptable processing speeds we
leverage the use of an accelerator, the NVIDIA Tesla K40
graphics processing unit (GPU), programmed via the use of
NVIDIA’s Compute Unified Architecture (CUDA) API. In
efforts to keep the accelerator support transferable to other
projects and effortless in its usage, the functionality was built as
a library.

II. GPU SUPPORT FOR T2OURNAMINT
 The GPU’s role in T2OURNAMINT is to transform an
incoming signal in a way that reflects specified environmental

effects for a given test sensor and test scenario. Environmental
effects supported are secondary targets, clutter distributions,
and receiver noise modeling. After such effects are computed
based on the original signal, the resulting signal is sent back to
the T2OURNAMINT software for further routing.
 As shown in Figure 1, the GPU’s role is to generate an
IQ uncompressed response that is representative of the
specified environment. To do this, the controlling software
sends target descriptors to the GPU specifying target positions
and gains. The GPU then converts these descriptors into target
range profiles. If clutter is to be injected, relevant clutter
parameters that describe the type of clutter, clutter distribution
within a patch and wind speeds are also sent to the GPU for the
generation of a clutter model. (The clutter model currently
supported on T2OURNAMINT is a simplified version of the
Land Clutter model proposed by Billingsley [1]). Once clutter
effects and target effects have been combined, they are
convolved with the transmit waveform on a pulse-by-pulse
basis to distribute the energy of the original signal in time based
on the given environment. In order to match processing gains
within the T2OURNAMINT hardware, amplitude scaling must
be applied to the convolved signal. As a last step a
representation of thermal noise at the receiver following a
White Gaussian Noise Distribution is injected into the signal.

Figure 1: GPU IQ Signal Processing Flow

III. CUDA-GPU

GPU Architecture
 GPUs were originally designed to efficiently handle
graphics rendering applications. Such applications are
characterized as being compute intensive and highly parallel.

For public release. Distribution A: Approved for public release: unlimited
distribution. This work is sponsored by the Office of the Secretary of Defense
under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

Based on these features, GPUs have devoted more transistors
for data processing as compared to CPUs, which have devoted
more transistors for control logic. This leads to GPUs being
characterized as a “many-core” chip, which means that the
number of cores it contains is on the order of hundreds or
thousands. CPUs on the other hand are “multi-core” chips;
characterized by having a lower number of cores, usually on the
order of tens, at most (see Figure 2). This design makes the
GPUs more suitable to address problems that can be expressed
as data or task parallel whereas CPUs are more suitable to
address sequential computation. To realize the highest
performance attainable for a given application we recommend
the use of both, a powerful CPU to handle control and
sequential processing along with a powerful GPU to process

highly parallel compute intensive portions of the code.

Figure 2: Multi-core vs. Many-core.

 GPUs have a hierarchical architecture in terms of
processors, threads, and memory. These are briefly discussed
next

Processor Hierarchy
 TheTesla Kepler architecture of contains at most 2880
core processors organized as 15 Streaming Multiprocessors
(SMX). Each SMX contains 192 single-precision CUDA cores,
64 double-precision units, 32 special function units (SFU) for
transcendental operations, 64 KB for shared memory and L1
cache, and 48 KB of read only data cache. Each multiprocessor
performs computation following the Single Instruction
Multiple Thread (SIMT) model, which is similar to the Single
Instruction Multiple Data (SIMD) model with the difference
being that each SIMT thread is executed independently with its
own instruction address and register state. Threads are grouped
into thread blocks, which get further assigned to an SMX [2].

Thread Hierarchy
 Threads, grouped into thread blocks, can be organized
in a one, two, or three-dimensional alignment. There are
limitations on the maximum number of threads that a block can
have, as all threads within a block are expected to reside in the
same SMX and must share limited resources. (The CUDA
programmer needs to be aware of and take into account such

limitations.) Blocks are further organized in a one or two-
dimensional grid. The number of thread blocks within a grid is
usually dictated by the size of the data being processed or by
hardware limitations of the particular GPU card.

Memory Hierarchy
 During execution CUDA threads access data via
multiple memory spaces. All threads have access to Global
Memory, which is off-chip, uncached and has high latency. The
lifetime of global memory is the lifetime of the application
(unless memory is explicitly de-allocated within the
application). The next memory level is Shared Memory. Shared
Memory is a low latency on-chip memory, smaller in size
compared to global memory, and software managed, meaning
that the programmer must explicitly move data in and out of
this store. For the Kepler line, the programmer has the option to
configure the 64 KB of available memory as a combination of
48 KB/16 KB, 32 KB/32 KB, or 16 KB/48 KB of Shared
Memory and L1-Cache, respectively. Kepler also has 48 KB of
Read-Only-Cache whose lifetime is the duration of the
function. In addition to this, Kepler has an improved L2 cache,
key for optimal data sharing across the GPU. Figure 3 shows a
summary of the memory hierarchy in the Kepler architecture
[2].
Figure 3: Kepler's Memory Hierarchy [2]

CUDA Programming Model
 CUDA is a scalable parallel programming model
provided by NVIDIA to exploit the parallel processing power
of GPUs for non-graphics applications. CUDA is an extension
of the C/C++ language that supports a heterogeneous
environment where parallel portions of the application code are
sent to the GPU device as kernels and remaining portions of
code are run on the CPU host. Kernels are functions that are
executed on the GPU by multiple threads. Each kernel call
launches a grid of thread blocks specified by the CUDA
programmer. In the CUDA execution model, data are
transferred from the host to the device, kernel functions get
executed on the device, and relevant results are transferred back
to the host. Within a kernel, the CUDA programmer has access

< >

CPU
TENS OF CORES

GPU
THOUSANDS OF CORES

READ-ONLY
DATA

L1
 CACHE

THREAD SHARED
MEMORY

L2
CACHE

L2
CACHE

to specific blocks and thread via the use of built in CUDA
variables [3].

IV. CUDA LIBRARY
 The T2OURNAMINT CUDA Library or T2 CUDA

Library, for short, is summarized in Figure 4. It contains two
functions to initialize a CUDA capable GPU device and to
release its resources at the end of a test. These functions are
called once during system startup and once during system
shutdown. Once the T2 software is ready to start processing the
first of potentially multiple waveforms, it will call the library
initialization routine for each waveform to be processed. At this
time if clutter and noise modeling are required, respective library
engines are also initialized.

Figure 4: T2OURNAMINT CUDA LIBRARY

After initialization of the main library there are two levels of
processing that occur, the frame level and the pulse level. The
frame level processing latency is limited by the software
management system, which runs on a Colfax CX1350s-XK6
with 2 Intel Xeon E5-2600, 10 cores each. The frame processing
speed that is currently achieved is about 10 ms, limiting the
frequency at which target positions and gains are being updated
throughout the test. In the future more effort will be dedicated
toward optimizing the runtime performance of the frame
processing; however, for slow moving targets the current frame
latency is good enough to execute the tests T2OURNAMINT
was originally designed for. The T2 CUDA Library includes
functions that are called at the frame level to reset previous target
range profiles and generate new ones based on the new positions
and gains.

On a per-pulse basis we have a different set of limitations
and constraints. The GPU is receiving waveform data on a pulse-
by-pulse basis at a given rate based on the pulse repetition
frequency of the radar. It is very important that we minimize or
avoid dropping pulses, as that would lead to inconsistent system
under test results. Based on the knowledge of the systems under
test we expect to have, we have set a latency goal for the GPU
pulse processing library function to fall within 200 µs. During
this time the waveform pulse will be sent to the GPU, processed
on the GPU, and transferred back to the software for further

routing. We are confident that this speed will support the
majority of tests that T2OURNAMINT must perform.

As the pulse processing routine is key in terms of latency and
performance, effort was put into optimizing such functionality.
The next section summarizes a set of optimization techniques
that were successful in achieving the pulse processing
performance goals.

V. OPTIMIZATIONS AND RESULTS
Baseline
 The baseline implementation for T2 CUDA Library
focused on designing and implementing the library in a way that
exploits precomputation opportunities and that minimizes
unnecessary overhead on the pulse-processing routine. This is
achieved by having an initialization routine called once per
waveform that allocates required GPU memory, initializes and
sets up FFT libraries, random number generator engines, and
clutter and noise models, as well as other precomputed values
that can be reused or easily transformed on a pulse-by-pulse
basis. This library initialization routine is accompanied by a
de-initialization routine that in turn de-allocates resources
allocated during the initialization phase.

Pinned Memory
 One of the first optimizations to implement in CUDA
code is the use of Pinned Memory. Pinned Memory, also known
as Non-Pageable memory, is an area of the CPU host DRAM
that is page-locked and therefore not swapped with secondary
storage. At user level space, allocated memory is always
Pageable by default, which provides the user with the notion of
unlimited DRAM or a Virtual Memory Space. GPU devices are
not able to access Pageable Memory directly, therefore when
transferring data to and from the CPU’s paged memory space
to the GPU’s device memory an intermediate data transfer
occurs to place the data on the CPU’s Non-Pageable memory
space, see Figure 5.

Figure 5: Host and Device Data Transfer

 To decrease data transfer time between CPU and GPU,
CUDA provides functions to directly allocate CPU host
memory in pinned memory space. By using such functions at
the host level, we are able to reduce the data transfers to and

GPU
DRAM

GPU
DRAM

Pageable Data Transfer Pinned Data Transfer

CPU Host

Pinned
Memory

CPU Host

Pinned
Memory

Pageable
Memory

from device memory by half, gaining a total speedup of 1.6x on
the pulse processing routine.

FFT Size Round to Next Power of 2
 The pulse processing routines require a series of Fast
Fourier Transforms (FFTs) to be executed. In such cases we
leverage the use of the cuFFT library included with the
NVIDIA CUDA toolkit. The cuFFT library provides a simple
interface to leverage the parallel processing power of GPUs for
multiple types of FFTs. This library has been highly optimized
for data sizes that can be written as a combination of the power
of the first 4 prime numbers (2, 3, 5, 7), with smaller prime
numbers resulting in better performance [4]. For data sizes that
can be written as a power of 2, the cuFFT library will provide
the optimal performance available. By rounding data sizes to
the next power of 2 we are able to reduce the execution time of
the FFTs achieving a total accumulated speedup of 1.9x.

Grid Configuration and Padding Optimization
 We tried out different grid and block configuration
parameters to find an optimal configuration. For our case
having 64 threads per thread block gave us the best
performance. The optimal number of threads per block that will
provide best performance to a kernel is influenced by the
amount of resources required for execution such as registers
and shared memory. Different applications will have different
optimal thread block sizes.
 At this stage we also decided to optimize the padding
approach for the data to be FFT’ed. In previous versions, if
needed, the padding was done before transferring the data to the
device, causing the transfer of unnecessary values into the GPU
card. To improve this approach, we created a kernel that clears
out the memory on the GPU where the data is to be placed,
allowing us to only transfer the actual values from the host even
if padding is required. In this implementation, if padding is
needed it is already taken care of by the kernel that clears the
memory before the transfer occurs. The time it takes to clear the
values on the device memory before the actual transfer is
insignificant, compared to the time it takes to transfer
unnecessary values. These optimizations combined, the grid
configuration changes along with the padding optimization, led
to an overall accumulated speedup of 2.8x.

Card Upgrade
 Although design decisions for T2OURNAMINT
included the use of an NVIDIA Tesla K40 card, the best
NVIDIA card available at the time for both single and double
precision performance, we began development with an
NVIDIA Tesla K20 that was readily available. To show the
compatibility benefits of using NVIDIA GPU cards as well as
the automatic performance gains by switching to a newer card
we included the performance results of doing such an upgrade.
The card upgrade resulted in a performance gain at the compute
level as well as at the bandwidth level. A total of 4.5x speedup
was achieved by the upgrade of the card.
Stream Support

 Newer versions of GPU cards and CUDA have the
capability to run multiple kernels concurrently, providing a
better way to support task parallelism. The NVIDIA Tesla-
Kepler GPU card along with the CUDA Toolkit 7.5, have
support for such functionality. This capability to execute
multiple kernels at the same time is made possible via the use
of CUDA streams. A CUDA stream contains a series of kernel
launches or memory transfers that might be dependent on each
other or need to be synchronized among them. Functions or
kernels running on different streams have seemingly no
dependency and can run concurrently. However, if needed,
synchronization points between multiple streams can also be
achieved via the use of CUDA events. CUDA events act as a
lock on the execution of a given stream making the stream wait
for a particular event to occur on another stream before
resuming execution. The use of CUDA streams not only allows
having multiple kernels running concurrently but also aids in
hiding communication with computation latency, provided it
has not been fully optimized at this stage. With stream support
we were able to achieve an overall accumulated speedup of 5.3x
for blocking calls and 5.8x for non-blocking pulse processing
calls.

VI. RESULTS
 A summary of the optimizations discussed in the
previous section, further broken down into time spent in data
transfers versus computation time, can be found in Table 1. As
mentioned in the introduction, the runtime performance goal for
the pulse processing routine was 200 μs. By investing time in
optimizing this routine we were able to decrease the processing
time from about 1ms down to 178 μs, which gives us a total
speedup of 5.8x. Results show that we were not only able to
achieve the runtime performance requirements set out for the
pulse processing routine but we were also able to exceed them.

Table 1: T2 CUDA Library Optimizations Summary

VII. FUTURE WORK
 As future work we recommend the enhancement and
further optimization of the T2 CUDA Library by using more
powerful cards. The Titan X, which is currently available in the
market, although it has a lower double precision performance,
~0.2 TFLOPS as compared to ~1.43 TFLOPS in the NVIDIA

Tesla K40, exhibits higher single precision performance, ~7
TFLOPS compared to ~4 TFLOPS. To avoid losing double
precision performance, we recommend upgrading to the
recently announced NVIDIA GTX 1080, the first of the
NVIDIA cards with the Tesla-Pascal architecture, Tesla P100
[5]. The card is expected to be available in the summer of 2016.
The card will have higher throughput and bandwidth than the
latest Tesla K40 and Titan X and features the new NVLINK
interconnect that allows faster data transfer rates allowing
memory bound applications to also benefit from NVIDIA
GPUs accelerators.

VIII. SUMMARY
We have successfully implemented and optimized a CUDA

library to handle environmental effects in T2OURNAMINT for
EW testing. We have shown that by dedicating time for
optimization, the use of NVIDIA GPUs and CUDA are a
feasible tool in accelerating the performance of an application
and achieving performance goals in the real-time processing
domain. With the optimizations presented in this paper we were
not only able to achieve performance requirements but we were
able to exceed them. Further performance improvements can be
achieved by leveraging the latest of NVIDIA GPU cards and
optimizing for such architectures.

IX. ACKNOWLEDGEMENTS
We would like to thank our sponsors at NAVAIR Pt. Mugu

for supporting this project and allowing us to incorporate the
GPGPU technology in the T2OURNAMINT system. We also
would like to thank the T2OURNAMINT team at MIT Lincoln
Laboratory for their contributions to this project.

REFERENCES
[1] J. B. Billingsley, “Statistical Analysis of Measured Radar Ground Clutter

Data,” IEEE Trans. Aerospace and Electronic Systems, vol 35, no. 2,
April 1999.

[2] NVIDIA, “White Paper, NVIDIA’s Next Generation CUDA Compute
Architecture: Kepler GK110,” 2012 NVIDIA Corporation.

[3] NVIDIA, “CUDA C Programming Guide,” 2007-2015 NVIDIA
Corporation.

[4] NVIDIA, “cuFFT User Guide,” 2015, NVIDIA Corporation, Retrieved
from http://docs.nvidia.com/cuda/cufft/index.html#axzz49bBKJGXy.

[5] NVIDIA, “Whitepaper, NVIDIA TESLA P100,” 2016, NVIDIA
Corporation.

	I. Introduction
	II. GPU Support for t2ournamint
	III. CUDA-GPU
	IV. CUDA Library
	V. OptimIzations and Results
	VI. Results
	VII. Future Work
	VIII. Summary
	IX. Acknowledgements
	References

